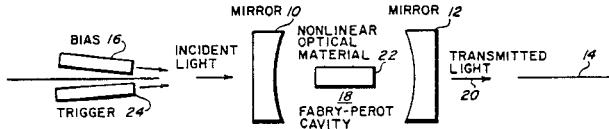


Patent Abstracts

These Patent Abstracts of recently issued patents are intended to provide the minimum information necessary for readers to determine if they are interested in examining the patent in more detail. Complete copies of patents are available for a small fee by writing: U.S. Patent and Trademark Office, Box 9, Washington, D.C. 20231.

4,558,923


Dec. 17, 1985

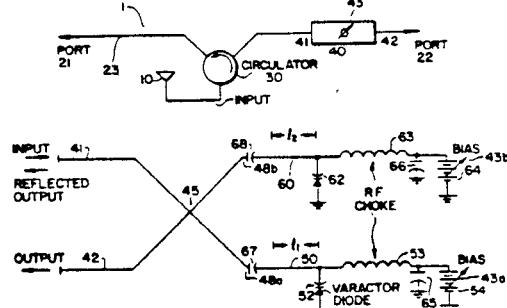
Picosecond Bistable Optical Switch Using Two-Photon Transitions

Inventors: Craig A. Hoffman, Jerry R. Meyer, and Filbert Bartoli.
Assignee: The United States of America as represented by the Secretary of the Navy.
Filed: Dec. 22, 1983.

Abstract—A bistable optical switch comprising a Fabry-Perot resonator containing a nonlinear semiconductor medium with a desired band structure and whose susceptibility (refractive index) varies with optical energy density. The Fabry-Perot resonator is biased to a point where two stable transmission states are possible. Switching is accomplished by pumping the nonlinear material with an energy $h\nu$ in the range $\frac{1}{2}\Delta_g < h\nu < \Delta_g$, where Δ_g is the bandgap between the upper valence band and the conduction band of the nonlinear material, in order to stimulate a two-photon valence-to-conduction band absorption transition at a non-minimum energy and thereby make possible a one- $h\nu$ photon virtual transition between the heavy hole and split-off valence bands of the nonlinear material. This virtual transition alters the susceptibility thereby switching the resonator to a different stable transmission state. Switching times on the order of picoseconds are obtained because switching-time is not dependent on the carrier recombination time.

17 Claims, 5 Drawing Figures

4,559,489

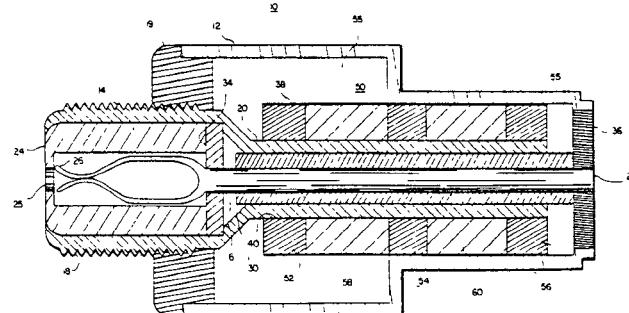

Dec. 17, 1985

Low-Loss Radio Frequency Multiple Port Variable Power Controller

Inventors: David C. Vacanti, John C. Read, and Jimmy S. Takeuchi.
Assignee: The Boeing Company.
Filed: Sep. 30, 1983.

Abstract—A multiport power controller uses remote-controllable variable reactive elements to set the amount of power delivered to the ports.

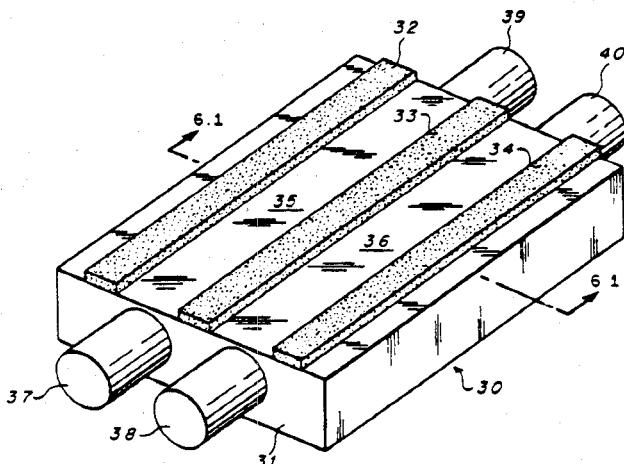
12 Claims, 5 Drawing Figures



Temperature Compensated Coaxial Cable Isolator

Inventor: Raymond G. Copek.
Assignee: Zenith Electronics Corporation.
Filed: Jul. 5, 1984.

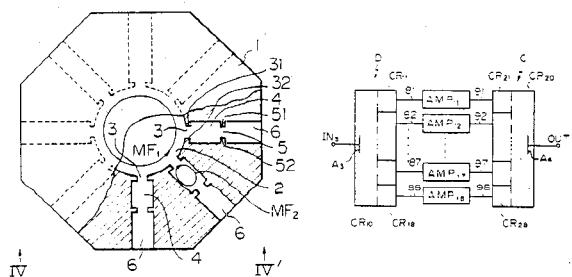
Abstract—A coaxial cable isolator includes a stepped diameter tubular outer conductive element and a threaded smaller diameter inner conductive element coaxially aligned therewith to form an interruption. A ceramic structure is positioned in the interruption and includes three ceramic capacitive elements, each having a different temperature coefficient selected to provide a minimum of 3.8 and maximum of 5.0 nanofarads of capacitance over the 0 degree Centigrade to +45 degree Centigrade operating temperature range of the isolator. Two ferrite elements for EMI absorption are sandwiched between the three capacitive elements.


6 Claims, 4 Drawing Figures

refractive index change of the stressed substrate in combination with the applied bias, the required control voltage is substantially reduced.

14 Claims, 6 Drawing Figures

4,562,409


Dec. 31, 1985

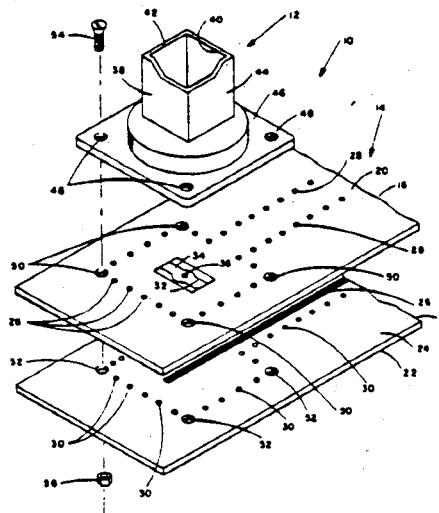
Cavity Resonator Coupling-Type Power Distributor/Power Combiner

Inventors: Toshiyuki Saito, Naofumi Okubo, and Yoshiaki Kaneko.
Assignee: Fujitsu Limited.
Filed: Mar. 26, 1984.

Abstract—A cavity resonator coupling-type power distributor/power combiner includes a first cavity resonator operatively resonating with a cylindrical $T_{0,n,0}$ mode, and a plurality of second cavity resonators arranged on the periphery of the first cavity resonator and extending radially and symmetrically with respect to the first cavity resonator. The second cavity resonators each have the same shape and size so that magnetic-field coupling is established between the first cavity resonator and each of the second cavity resonators, for distributing or combining microwave power in a microwave amplifier.

37 Claims, 8 Drawing Figures

4,562,416


Dec. 31, 1985

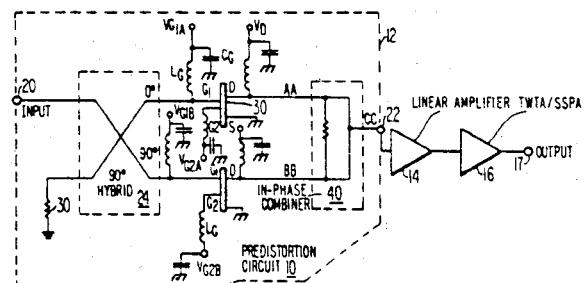
Transition from Stripline to Waveguide

Inventor: Darrel F. Sedivec.
Assignee: Sanders Associates, Inc.
Filed: May 31, 1984.

Abstract—A waveguide-to-stripline transition includes a stripline portion (14) that fits over an opening in one end of waveguide (12). The stripline portion has a cavity defined by an upper ground-plane conductor (20), a lower ground-plane conductor (22), and a rectangular arrangement of plated-through holes (28) that electrically connect the upper ground-plane conductor (20) to the lower ground-plane conductor (22). The upper ground-plane conductor (20) is etched to provide an aperture (32) with a conductive crosspiece (34) extending longitudinally across it. A plated-through hole (36) connects the crosspiece (34) to the center conductor (26) to provide a T-shaped feed element in the cavity. As compared with prior-art waveguide-to-stripline transitions, this transition is mechanically stronger and has higher power-handling capability.

3 Claims, 1 Drawing Figure

4,564,816


Jan. 14, 1986

Predistortion Circuit

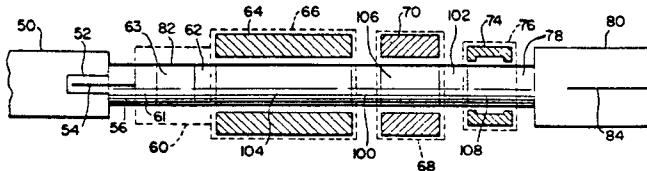
Inventors: Mahesh Kumar and James C. Whartenby.
Assignee: RCA Corporation.
Filed: May 9, 1984.

Abstract—A predistortion circuit for use with a solid-state power amplifier or traveling wave tube amplifier which exhibits phase and amplitude nonlinearities. The predistortion circuit, which produces gain and phase distortion complementary to that of the associated power amplifier, comprises a hybrid circuit for splitting the input signal into two output signals at respective output terminals, the signals having a relative phase difference of 90° , a pair of dual gate FET's or other active nonlinear devices, each connected to a different one of the two output terminals and a combiner for combining in-phase the outputs of the nonlinear devices. Bias on the nonlinear devices is adjusted to effect, in the predistortion circuit, nonlinearities complementary to those of the power amplifier.

11 Claims, 9 Drawing Figures

4,564,824

Jan. 14, 1986 4,564,826

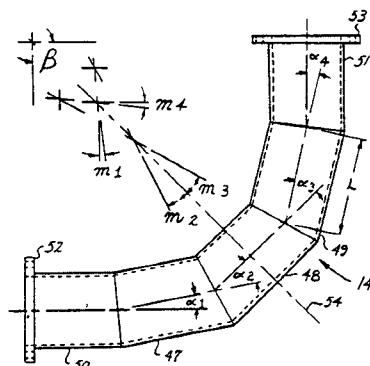

Jan. 14, 1986

Adjustable-Phase-Power Divider Apparatus

Inventor: Charles R. Boyd, Jr.
 Assignee: Microwave Applications Group.
 Filed: Mar. 30, 1984.

Abstract—A phase-shifter apparatus which imposes a desired phase shift on an electromagnetic wave traveling through a waveguide, and divides the power in an output waveguide into two parts. The phase shifter apparatus includes a quarter-wave plate for changing the polarizations of the linearly polarized wave to a circularly polarized wave, a rod of ferromagnetic material with a magnetic field for imposing a desired phase shift on the circularly polarized wave traveling through the rod, a quarter-wave plate for converting the circularly polarized wave to a linearly polarized wave, and a septum polarizer in the output waveguide for dividing the power. The output waveguide has the power divided between two ports, and independent phase shifts are imposed on the electromagnetic waves of each port.

21 Claims, 3 Drawing Figures



Multiple Mitered Circular Waveguide Bend

Inventors: Hans J. Wiesenfarth, and Geza Dienes.
 Assignee: Andrew Corporation.
 Filed: Apr. 6, 1984.

Abstract—A device for providing a low VSWR match at a bend between two straight circular waveguides has an odd number of at least three circular waveguide sections of approximately equal length along their axes mitered at both of their ends, the length chosen to be an odd multiple of a quarter guide wavelength at the desired operating frequency, and the waveguide sections being mitered so that the device is symmetrical about the bisecting plane of the bend. The ratios of the angles between the adjacent waveguide sections around the bend are approximately binomial coefficients in order to obtain a maximally flat passband.

8 Claims, 4 Drawing Figures

